发布时间:2024-11-18
特价活动:>>>> 用友U8、T6、T+、T3软件产品4折优惠,畅捷通T+cloud、好会计、易代账、好业财、好生意云产品6-8折优惠。
一篇比较全面介绍数据仓库建模方法的普及文章,主要包括了四个方面的内容:
1、什么是数据模型:简而言之就是对现实世界业务对象及关系的抽象。
2、为什么需要数据模型:数据模型不是必需的,建模的目的是为了改进业务流程、消灭信息孤岛和数据差异及提升业务支撑的灵活性。
3、如何建设数据模型:介绍了数据模型的架构的五大部分、数据建模四个阶段及三大建模方法。
4、数据仓库建模的样例:举了社保的案例。
正文开始
这篇文章最早是2008年当时的IBM 信息技术专家 周三保在IBM网站刊登的。所谓水无定势,兵无常法。不同的行业,有不同行业的特点,因此,从业务角度看,其相应的数据模型是千差万别的。目前业界较为主流的是数据仓库厂商主要是 IBM 和 NCR,这两家公司的除了能够提供较为强大的数据仓库平台之外,也有各自的针对某个行业的数据模型。
例如,在银行业,IBM 有自己的 BDWM(Banking data warehouse model),而 NCR 有自己的 FS-LDM 模型。在电信业,IBM 有 TDWM(Telecom Data warehouse model),而 NCR 有自己的 TS-LDM 模型。因此,我们看到,不同的公司有自己针对某个行业的理解,因此会有不同的公司针对某个行业的模型。而对于不同的行业,同一个公司也会有不同的模型,这主要取决于不同行业的不同业务特点。
虽然每个行业有自己的模型,但是,我们发现,不同行业的数据模型,在数据建模的方法上,却都有着共通的基本特点。
最后,我们在本文的结尾给大家介绍了一个具体的数据仓库建模的样例,帮助大家来了解整个数据建模的过程。
什么是数据模型
数据模型是抽象描述现实世界的一种工具和方法,是通过抽象的实体及实体之间联系的形式,来表示现实世界中事务的相互关系的一种映射。在这里,数据模型表现的抽象的是实体和实体之间的关系,通过对实体和实体之间关系的定义和描述,来表达实际的业务中具体的业务关系。
因此,在整个数据仓库的模型的设计和架构中,既涉及到业务知识,也涉及到了具体的技术,我们既需要了解丰富的行业经验,同时,也需要一定的信息技术来帮助我们实现我们的数据模型,最重要的是,我们还需要一个非常适用的方法论,来指导我们自己针对我们的业务进行抽象,处理,生成各个阶段的模型。
为什么需要数据模型
在数据仓库的建设中,我们一再强调需要数据模型,那么数据模型究竟为什么这么重要呢?首先我们需要了解整个数据仓库的建设的发展史。
如何建设数据模型
建设数据模型既然是整个数据仓库建设中一个非常重要的关键部分,那么,怎么建设我们的数据仓库模型就是我们需要解决的一个问题。这里我们将要详细介绍如何创建适合自己的数据模型。
数据仓库数据模型架构
数据仓库的数据模型的架构和数据仓库的整体架构是紧密关联在一起的,我们首先来了解一下整个数据仓库的数据模型应该包含的几个部分。从下图我们可以很清楚地看到,整个数据模型的架构分成 5 大部分,每个部分其实都有其独特的功能。
通过对整个数据仓库模型的数据区域的划分,我们可以了解到,一个好的数据模型,不仅仅是对业务进行抽象划分,而且对实现技术也进行具体的指导,它应该涵盖了从业务到实现技术的各个部分。
数据仓库建模阶段划分
我们前面介绍了数据仓库模型的几个层次,下面我们讲一下,针对这几个层次的不同阶段的数据建模的工作的主要内容:
从我们上面对数据仓库的数据建模阶段的各个阶段的划分,我们能够了解到整个数据仓库建模的主要工作和工作量,希望能够对我们在实际的项目建设能够有所帮助。
数据仓库建模方法
大千世界,表面看五彩缤纷,实质上,万物都遵循其自有的法则。数据仓库得建模方法同样也有很多种,每一种建模方法其实代表了哲学上的一个观点,代表了一种归纳,概括世界的一种方法。目前业界较为流行的数据仓库的建模方法非常多,这里主要介绍范式建模法,维度建模法,实体建模法等几种方法,每种方法其实从本质上讲就是从不同的角度看我们业务中的问题,不管从技术层面还是业务层面,其实代表的是哲学上的一种世界观。我们下面给大家详细介绍一下这些建模方法。
1. 范式建模法(Third Normal Form,3NF)
范式建模法其实是我们在构建数据模型常用的一个方法,该方法的主要由 Inmon 所提倡,主要解决关系型数据库得数据存储,利用的一种技术层面上的方法。目前,我们在关系型数据库中的建模方法,大部分采用的是三范式建模法。范式是数据库逻辑模型设计的基本理论,一个关系模型可以从第一范式到第五范式进行无损分解,这个过程也可称为规范化。在数据仓库的模型设计中目前一般采用第三范式,它有着严格的数学定义。从其表达的含义来看,一个符合第三范式的关系必须具有以下三个条件 :
以笔者的观点来看,Inmon 的范式建模法的最大优点就是从关系型数据库的角度出发,结合了业务系统的数据模型,能够比较方便的实现数据仓库的建模。但其缺点也是明显的,由于建模方法限定在关系型数据库之上,在某些时候反而限制了整个数据仓库模型的灵活性,性能等,特别是考虑到数据仓库的底层数据向数据集市的数据进行汇总时,需要进行一定的变通才能满足相应的需求。因此,笔者建议读者们在实际的使用中,参考使用这一建模方式。
2. 维度建模法
维度建模法,Kimball 最先提出这一概念。其最简单的描述就是,按照事实表,维表来构建数据仓库,数据集市。这种方法的最被人广泛知晓的名字就是星型模式(Star-schema)。
上图的这个架构中是典型的星型架构。星型模式之所以广泛被使用,在于针对各个维作了大量的预处理,如按照维进行预先的统计、分类、排序等。通过这些预处理,能够极大的提升数据仓库的处理能力。特别是针对 3NF 的建模方法,星型模式在性能上占据明显的优势。
同时,维度建模法的另外一个优点是,维度建模非常直观,紧紧围绕着业务模型,可以直观的反映出业务模型中的业务问题。不需要经过特别的抽象处理,即可以完成维度建模。这一点也是维度建模的优势。
但是,维度建模法的缺点也是非常明显的,由于在构建星型模式之前需要进行大量的数据预处理,因此会导致大量的数据处理工作。而且,当业务发生变化,需要重新进行维度的定义时,往往需要重新进行维度数据的预处理。而在这些与处理过程中,往往会导致大量的数据冗余。
另外一个维度建模法的缺点就是,如果只是依靠单纯的维度建模,不能保证数据来源的一致性和准确性,而且在数据仓库的底层,不是特别适用于维度建模的方法。因此以笔者的观点看,维度建模的领域主要适用与数据集市层,它的最大的作用其实是为了解决数据仓库建模中的性能问题。维度建模很难能够提供一个完整地描述真实业务实体之间的复杂关系的抽象方法。
3. 实体建模法
实体建模法并不是数据仓库建模中常见的一个方法,它来源于哲学的一个流派。从哲学的意义上说,客观世界应该是可以细分的,客观世界应该可以分成由一个个实体,以及实体与实体之间的关系组成。那么我们在数据仓库的建模过程中完全可以引入这个抽象的方法,将整个业务也@可以划分成一个个的实体,而每个实体之间的关系,以及针对这些关系的说明就是我们数据建模需要做的工作。
上图表述的是一个抽象的含义,如果我们描述一个简单的事实:“小明开车去学校上学”。以这个业务事实为例,我们可以把“小明”,“学校”看成是一个实体,“上学”描述的是一个业务过程,我们在这里可以抽象为一个具体“事件”,而“开车去”则可以看成是事件“上学”的一个说明。
由于实体建模法,能够很轻松的实现业务模型的划分,因此,在业务建模阶段和领域概念建模阶段,实体建模法有着广泛的应用。从笔者的经验来看,再没有现成的行业模型的情况下,我们可以采用实体建模的方法,和客户一起理清整个业务的模型,进行领域概念模型的划分,抽象出具体的业务概念,结合客户的使用特点,完全可以创建出一个符合自己需要的数据仓库模型来。
但是,实体建模法也有着自己先天的缺陷,由于实体说明法只是一种抽象客观世界的方法,因此,注定了该建模方法只能局限在业务建模和领域概念建模阶段。因此,到了逻辑建模阶段和物理建模阶段,则是范式建模和维度建模发挥长处的阶段。
因此,笔者建议读者在创建自己的数据仓库模型的时候,可以参考使用上述的三种数据仓库得建模方法,在各个不同阶段采用不同的方法,从而能够保证整个数据仓库建模的质量。
数据仓库建模样例
上面介绍得是一些抽象得建模方法和理论,可能理解起来相对有些难度,因此,笔者在这里举一个例子,读者可以跟着我们的这个样例,来初步了解整个数据仓库建模的大概过程。
背景介绍
熟悉社保行业的读者可以知道,目前我们国家的社保主要分为养老,失业,工伤,生育,医疗保险和劳动力市场这 6 大块主要业务领域。在这 6 大业务领域中,目前的状况养老和事业的系统已经基本完善,已经有一部分数据开始联网检测。而对于工伤,生育,医疗和劳动力市场这一块业务,有些地方发展的比较成熟,而有些地方还不够成熟。
1.业务建模阶段
基于以上的背景介绍,我们在业务建模阶段,就很容易来划分相应的业务。因此,在业务建模阶段,我们基本上确定我们本次数据仓库建设的目标,建设的方法,以及长远规划等。
在这里,我们将整个业务很清楚地划分成了几个大的业务主线,例如:养老,失业,工伤,生育,医疗,劳动力等着几个大的部分,然后我们可以根据这些大的模块,在每个业务主线内,考虑具体的业务主线内需要分析的业务主题。
因此,业务建模阶段其实是一次和业务人员梳理业务的过程,在这个过程中,不仅能帮助我们技术人员更好的理解业务,另一方面,也能够发现业务流程中的一些不合理的环节,加以改善和改进。
同时,业务建模阶段的另一个重要工作就是确定我们数据建模的范围,例如:在某些数据准备不够充分的业务模块内,我们可以考虑先不建设相应的数据模型。等到条件充分成熟的情况下,我们可以再来考虑数据建模的问题。
2.领域概念建模阶段
领域概念建模阶段是数据仓库数据建模的一个重要阶段,由于我们在业务建模阶段已经完全理清相应的业务范围和流程,因此,我们在这个领域概念建模阶段的最主要的工作就是进行概念的抽象,整个领域概念建模的工作层次
通过领域概念建模,数据仓库的模型已经被抽象成一个个的实体,模型的框架已经搭建完毕,下面的工作就是给这些框架注入有效的肌体。
3.逻辑建模阶段
通过领域概念建模之后,虽然模型的框架已经完成,但是还有很多细致的工作需要完成。一般在这个阶段,我们还需要做非常多的工作,主要包括:
总而言之,在逻辑建模阶段,我们主要考虑得是抽象实体的一些细致的属性。通过逻辑建模阶段,我们才能够将整个概念模型完整串联成一个有机的实体,才能够完整的表达出业务之间的关联性。
在这个阶段,笔者建议大家可以参考 3NF 的建模方法,表达出实体的属性,以及实体与实体之间的联系。例如:在这个阶段,我们可以通过采用 ERWIN 等建模工具等作出符合 3NF 的关系型数据模型来。
4.物理建模阶段
物理建模阶段是整个数据建模的最后一个过程,这个过程其实是将前面的逻辑数据模型落地的一个过程。考虑到数据仓库平台的不同,因此,数据模型得物理建模过程可能会稍微有一些不同,在这个阶段我们主要的工作是:
经过物理建模阶段,整个数据仓库的模型已经全部完成,我们可以按照自己的设计来针对当前的行业创建满足自己需要的数据模型来。
这里,笔者通过一个数据建模的样例,希望能够给读者一个关于数据仓库建模的感性的认识。希望读者在利用这些数据仓库得建模方法创建自己的数据模型的时候,可以根据业务实际的需要和自己对抽象能力的把握来创建适合自己的数据模型。
客服电话:400-665-0028
关键字:用友财务软件,畅捷通软件,财务软件,进销存软件,U9官网,用友U8,用友T1,用友T+,用友T3,用友T6,畅捷通好会计,好生意,智+好业财,用友培训服务售后公司,畅捷通运营培训服务公司
版权所有:用友畅捷通软件 Copyright © 2025 All rights reserved.